
Twelve Ways to Fool the Masses:
Back to the Future

David H. Bailey
Lawrence Berkeley National Laboratory

http://crd.lbl.gov/~dhbailey

Example from Physics:
Measurements of Speed of Light

Why the discrepancy between pre-1945 and post-1945 values?
Probably due to biases and sloppy experimental methods.

Example from the Social Sciences:
The Blank Slate

The “Blank Slate” paradigm (1950-1990):
◊ The human mind at birth is a “blank slate.”
◊ Heredity and biology play no significant role in human

personality – all behavioral traits are socially constructed.
Current consensus, based on latest research:

◊ Humans at birth possess sophisticated facilities for
language acquisition, pattern recognition and social life.

◊ Heredity and biology are the dominant factors of
personality development.

How did these scientists get it so wrong?
◊ Sloppy experimental methodology and analysis.
◊ Pervasive biases and wishful thinking.

Ref: Steven Pinker, The Blank Slate: The Modern Denial of Human Nature

History of Parallel Computing

1976-1986: Initial research studies and demos.
1986-1990: First large-scale systems deployed.
1990-1994: Successes over-hyped; faults ignored;

shoddy measurement methods used;
questionable performance claims made.

1994-1998: Numerous firms fail; agencies cut funds.
1998-2002: Reassessment.
2002-2006: Recovering?

Parallel System Performance
Practices, circa 1990

Performance results on small-sized parallel systems
were linearly scaled to full-sized systems.
◊ Example: 8,192-CPU results were linearly scaled to

65,536-CPU results.
◊ Rationale: “We can’t afford a full-sized system.”
◊ Sometimes this was done without any clear disclosure

in the paper or presentation.

Parallel System Performance
Practices, circa 1990

Highly tuned programs were compared with
untuned implementations on other systems.
◊ In comparisons with vector systems, often little or

no effort was made to tune the vector code.
◊ This was the case even for comparisons with

SIMD parallel systems – here the SIMD code can
be directly converted to efficient vector code.

Parallel System Performance
Practices, circa 1990

Inefficient algorithms were employed, requiring
many more operations, in order to exhibit an
artificially high Mflop/s rate.
◊ Some scientists employed explicit PDE schemes

for applications where implicit schemes were
known to be much better.

◊ One paper described doing a discrete Fourier
transform by direct computation, rather than by
using an FFT (8n2 operations rather than 5n log2n).

Parallel System Performance
Practices, circa 1990

Performance rates on 32-bit floating-point data on
one system were compared with rates on 64-bit
data on other systems.
◊ Using 32-bit data instead of 64-bit data effectively

doubles data bandwidth, thus yielding artificially
high performance rates.

◊ Some computations can be done safely with 32-bit
floating-point arithmetic, but most cannot.

◊ Even 64-bit floating-point arithmetic is not enough
for some scientific applications – 128-bit is required.

Parallel System Performance
Practices, circa 1990

In some cases, performance experiments reported in
published results were not actually performed.
◊ Abstract of published paper:

“The current Connection Machine implementation runs at 300-800
Mflop/s on a full CM-2, or at the speed of a single processor of a
Cray-2 on 1/4 of a CM-2.”

◊ Buried in text:
“This computation requires 568 iterations (taking 272 seconds) on
a 16K Connection Machine.”
i.e., the computation was not run on a full 64K CM-2.
“In contrast, a Convex C210 requires 909 seconds to compute this
example. Experience indicates that for a wide range of problems,
a C210 is about 1/4 the speed of a single processor Cray-2, …”
i.e., the computation was not run on a Cray-2 at all.

Parallel System Performance
Practices, circa 1990

Scientists were just as guilty as commercial
vendors of questionable performance reporting.
◊ The examples in my files were written by

professional scientists and published in peer-
reviewed journals and conference proceedings.

◊ One example is from an award-winning paper.
Scientists in some cases accepted free computer
time or research funds from vendors, but did not
disclose this fact in their papers.

Scientists should be held to a higher standard than
vendor marketing personnel.

Performance Plot A

0

0.5

1

1.5

2

2.5

3

3.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Objects

T
im

e
(H

ou
rs

)

Data for Plot A

Total Parallel system Vector system
Objects Run time Run time
20 8:18 0:16
40 9:11 0:26
80 11:59 0:57
160 15:07 2:11
990 21:32 19:00
9600 31:36 3:11:50*

Notes:
In last entry, the 3:11:50 figure is an estimate.
The vector system code is “not optimized.”
The vector system performance is better except for the last
(estimated) entry.

Performance Plot B

10-1

100

101

102

103

103 104 105 106 107

Number of Grid Cells

C
PU

 S
ec

on
ds

 p
er

 I
te

ra
tio

n

Facts for Plot B

32-bit performance rates on a parallel system are
compared with 64-bit performance on a vector system.
Parallel system results are linearly extrapolated to a full-
sized system from a small system (only 1/8 size).
The vector version of code is “unvectorized.”
The vector system “curves” are straight lines – i.e., they
are linear extrapolations from a single data point.

Summary:
It appears that of all points on four curves in this plot, at
most four points represent real timings.

Twelve Ways to Fool the Masses

1. Quote only 32-bit performance results, not 64-bit
results.

2. Present performance figures for an inner kernel, and
then represent these figures as the performance of the
entire application.

3. Quietly employ assembly code and other low-level
language constructs.

4. Scale up the problem size with the number of
processors, but omit any mention of this fact.

5. Quote performance results projected to a full system.
6. Compare your results against scalar, unoptimized code

on conventional systems.

Twelve Ways to Fool the Masses

7. When direct run time comparisons are required,
compare with an old code on an obsolete system.

8. If Mflop/s rates must be quoted, base the operation
count on the parallel implementation, not on the
best sequential implementation.

9. Quote performance in terms of processor utilization,
parallel speedups or Mflop/s per dollar.

10. Mutilate the algorithm used in the parallel
implementation to match the architecture.

11. Measure parallel run times on a dedicated system,
but measure conventional run times in a busy
environment.

12. If all else fails, show pretty pictures and animated
videos, and don't talk about performance.

Twelve Ways: Basic Principles

Use well-understood, community-defined metrics.
Cite performance rates based on efficient algorithms, not
on schemes that exhibit artificially high Mflop/s rates.
Use comparable levels of tuning.
Provide full details of experimental environment, so that
performance results can be reproduced by others.
Disclose any details that might affect an objective
interpretation of the results.
Honesty and reproducibility should characterize all work.

Danger: We can fool ourselves, as well as others.

New York Times, 22 Sept 1991

Excerpts from NYT Article

“Rival supercomputer and work station
manufacturers are prone to hype, choosing the
performance figures that make their own systems
look better.”

“It’s not really to the point of widespread fraud, but
if people aren’t somewhat more circumspect, it
could give the field a bad name.”

Fast Forward to 2004:
Five New Ways to Fool the Masses

Dozens of runs are made, but only the best performance
figure is cited in the paper.
Runs are made on part of an otherwise idle system,
placing an unrealistically light load on the network.
Performance rates are cited for a run with only one CPU
active per node.
Special operating system or compiler settings are used
that are not appropriate for real-world usage.
“Scalability” is defined as a successful execution on a
large number of CPUs, regardless of performance.

And lots of: “Show pretty pictures and animated videos,
and don't talk about performance.”

Grid Computing Projects

GRID

NSF
Cyberinfrastructure

GEON

SETI@Home

Seti@home sustains 35 Tflop/s on 2M+ systems
1.7 x 1021 flops over 3 years

Supernova Cosmology Infrastructure
[Thanks to W. Johnston, LBNL]

Potential for Overselling the Grid

“All supercomputer computations will soon be done
on grids.”
“With the grid, every scientist will have access to all
scientific data.”
“A computational grid has greater capacity than its
constituent systems.”
“Corporate data processing will soon be handled by
SETI-at-home-style computing utilities.”
Etc.

What the Grid Does Well

Providing national or international access to
important scientific datasets.
Providing a uniform scheme for remote system
access and user authentication.
Providing a high-performance parallel platform
for certain very loosely coupled computations.
Providing a high-capability platform for large
computations that can run on a single remote
system, chosen at run time.
Enabling new types of multi-disciplinary, multi-
system, multi-dataset research.

What the Grid Doesn’t Do So Well

Scientific computations that require heavy
interprocessor communication.
◊ Probably the majority of high-end scientific

computations are of this nature.
◊ This doesn’t rule out such applications running

remotely on a single system connected to the grid.

Many classified or proprietary computations.
◊ Current grid security and privacy are not

convincing for many of these users
◊ This doesn’t rule out “internal grids” -- some have

been quite successful.

Combating Performance Abuse:
The Role of Intelligent Benchmarks

Well-designed, rigorous, scalable performance
benchmark tests.
◊ Must be produced by a community-based effort.
◊ Must be a based on codes that have credibility as

a “useful” scientific or commercial application.
◊ Must be easily implemented without lengthy,

highly expert effort.
◊ Must be appropriate for moderate-sized systems

as well as very large systems.
◊ Must include a clear path to increase problem

sizes for future use.

The Role of Intelligent Benchmarks

Well-thought-out “ground rules.”
◊ How much tuning of the benchmark is permitted?
◊ How is the extent of tuning measured?
◊ How will disputes be settled?

If ground rules can be abused, they will be abused.

The Role of Intelligent Benchmarks

A rational scheme for calculating performance
rates.
◊ How is run time measured?
◊ Is required initialization included in the run time?
◊ How will operation counts or the amount of work

performed be reckoned?

A well-defined test to validate the correctness of
the results.
◊ It is best if the benchmark includes its own

scalable validity test.
◊ At the least, spot checks of results are needed.

The Role of Intelligent Benchmarks

A well-supported repository of results.
◊ Kept up to date – a long-term commitment.
◊ Includes all environmental and system

information.
◊ New results periodically solicited.
◊ A searchable database is preferred.

Twelve Ways: Back to the Future

Use well-understood, community-defined metrics.
Cite performance rates based on efficient algorithms, not
on schemes that exhibit artificially high Mflop/s rates.
Use comparable levels of tuning.
Provide full details of experimental environment, so that
performance results can be reproduced by others.
Disclose any details that might affect an objective
interpretation of the results.
Honesty and reproducibility should characterize all work.

Danger: We can fool ourselves, as well as others.

